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ABSTRACT  

One of the recent generalizations of (t, n) secret sharing for hierarchical threshold access structures is 

given by Tassa, where he answers the natural question of sharing a secret among a set of participants, say 

military officers, so that the secret can be constructed by a group of participants, some of whom are 

hierarchically superior to others. Both recent schemes proposed by Tassa for addressing this problem 

require some significant amount of theoretical background. We give a conceptually simpler alternative for 

the understanding of the realization of hierarchical threshold access structures and we consider perfectness 

of our scheme with the help of computer experiments. Our simple scheme employs a slightly different 

approach than previous works, as it involves a certain distribution of polynomials, where members of 

higher compartments are given a summation of evaluations of higher number of polynomials, resulting in 

a hierarchical effect. We further consider some alternative hierarchical access structures having potential 

to be applied in military. The access structures that we consider are realized herein with a simple 

employment of the well known building blocks such as Lagrange interpolation and access structure 

product and can be realized with an information rate at worst 1/m. 

1.0 INTRODUCTION 

The foundation of secret sharing is assumed to start with Shamir [1] and Blakley [2] who independently 

introduced  t-out-of-n, or simply (t,n) secret sharing schemes (SSS) that allow a set of at least t participants 

to recover a secret while any t-1 or less participants fail in such an attempt. A secret sharing scheme is 

called perfect if a non-authorized participant set can learn no information about secret, while an authorized 

set recovers the secret. Simmons [3] introduced generalizations of (t,n) secret sharing, namely hierarchical 

and compartmented threshold secret sharing. In these multipartite approaches, the trust is not distributed 

uniformly among the set of participants. Letting U= 
1

m

ii
C


be the set of participants which is partitioned 

into m disjoint subsets of compartments iC , 1 i m  , a multipartite access structure 2U  is one that 

does not distinguish between members of the same compartment. It is reasonable to assume that access 

structures are monotone, i.e., if A and A B U  , then B . A well known measure of efficiency 

for SSS's is the notion of information rate, which is concerned with the size of the private data (shares of 

participants) used for sharing a secret of certain size. A secret sharing scheme is called  ideal if the domain 

of shares of each user equals to the domain of secrets, yielding to an information rate 1. An access 

structure   is ideal if for some finite domain of shares, there exists an ideal secret sharing scheme 

realizing it. 

Hierarchical access structures that admit an ideal secret sharing scheme are characterized within a unified 

framework in [9]. There are three main types of ``hierarchy-involved" access structures in literature. Those 

are, in chronological order, Shamir's weighted threshold access structures [1], Simmons' hierarchical 

access structures [3] which answer the question of solving a secret by either two vice presidents or three 

bank tellers (where a vice president can always replace a bank teller) and Tassa's hierarchical threshold 

access structures [4] raising an answer to the problem of sharing a secret among three employees, say 

again composed of vice presidents and bank tellers, at least two of which is a vice president. The main 
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difference among the last two structures is that the former is a disjunction of different compartments 

representing distinct hierarchy levels, whereas the latter is a conjunction of such compartments. Both 

definitions consider the case where some of the participants are hierarchically superior to others. The 

definition of the access structure given in [4] is as follows. Letting U= 
1

m

ii
C


be the set of participants   

with disjoint compartments iC ,1 i m  , 

    

Under the same assumptions of above definition, the former hierarchical access structure that is studied by 

Simmons is as follows. 

 

Previous Work. Besides proposing such hierarchical threshold access structures, Tassa gave an ideal SSS 

for their realizing in [4]. To reconstruct the secret, he used Birkhoff interpolation using some derivative 

values of a polynomial. This approach took attention and found place in recent applications, an example of 

which is  employment in ad hoc networks [10]. Birkhoff interpolation is performed in a setting that the 

given values of the unknown polynomial, P(x), also include derivative values. Specifically, participants 

from level Ci, 1 i m   receive the value of the ti-1
th 

derivative (t0=0) of P at the point that identifies them. 

Allowing participants from higher levels have shares such as derivatives of P of lower orders, naturally let 

shares of such participants carry more information on the coefficients of P than shares of participants from 

lower levels. Later on, Tassa and Dyn [5] proposed another scheme for threshold access structures, which 

demands calculation of tm restrictions of a bivariate polynomial to a line each of which is followed by a 

univariate Lagrange interpolation. We would like to note that the aforementioned works [4],[5] and the 

modified scheme we give herein are ideal and linear in the sense of Brickell's [7]. 

The reconstruction phase of a linear SSS in essence corresponds to solving some linear system. For a 

random allocation of participant identities, the hierarchical schemes in [4] and [5] and ours are perfect in a 

probabilistic manner. That is, when the underlying field F is large enough, the probability that an 

authorized set not being able to reconstruct the secret together with the probability that a non-authorized 

set reconstructs the secret is negligible. 

Our Strategy. The only two schemes for hierarchical threshold access structures [4] and [5] apply 

Birkhoff interpolation and subsequent univariate Lagrange interpolation respectively. In the very essence, 

both methods correspond to solving a linear system of equations at the end. Instead of applying any kind 

of interpolation techniques, we present a scheme that directly leads us again to a linear system of 

equations. Letting m to represent the number of compartments, we give summation of evaluations of m 

polynomials at some public points to the highest compartment in the hierarchy, summation of evaluations 

of m-1 polynomials in the second highest level, and continuing this manner, evaluation of only 1 

polynomial to the lowest compartment of the hierarchy. They are combined in a manner that participants 

from the highest levels can always replace the lower-leveled ones whereas the converse does not hold. 

Organization of the Paper. After introducing some preliminaries in section 2, we give our ideal scheme 

for hierarchical threshold access structures in section 3, where an example together with a table of 

experimental results is included. In section 4, we consider how Lagrange interpolation and access structure 

product can be employed to obtain a variety of alternative hierarchical access structures. We conclude 

with some remarks on section 5. 
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2.0 PRELIMINARIES 

ILSSS. In an ideal linear secret sharing scheme(ILSSS) over a finite field F, the domain of secrets is equal 

to F (so that the scheme is ideal) and the scheme is specified by n+1 vectors in F
d
 where d is an integer. 

Such vectors are as follows. The dealer uses a vector ui for each participant ui belonging to U, 1 i n  , 

and a vector t which is kept private. To share a secret SF, the dealer chooses a random vector wF
d
 

such that the inner product w.t=S and distribute each share w.ui to participant ui. 

Shamir's SSS. The basic linear scheme proposed by Shamir [1], makes use of Lagrange's polynomial 

interpolation. The scheme works as follows: Let q be a large prime and S   Fq be the secret to be shared. 

The dealer chooses a random univariate polynomial f(x)=S+
1

1

t
i

i

i

a x




 Fq of degree t-1 where the constant 

term is the secret. In order to distribute S among n participants given by u1,...,un assign to the j-th 

participant the share  f(uj)=S+
1

1

t
i

i j

i

a u




 ,1 j n  . 

While the reconstruction of the secret can be described by a formula resulting from Lagrange's polynomial 

interpolation, a linear algebra point of view heads us towards the following linear system that the 

authorized subset of participants 
1 1{ ,..., }, 1 ...

ti i tu u i i n     must solve. 

 

As pointed out by Shamir himself in [1], a hierarchical variant can be introduced simply by assigning a 

higher number of shares to higher level participants. However such a solution is far away from being ideal. 

While Shamir's SSS, having a Vandermonde matrix on its basis, enjoys the property of reconstructibility 

of the secret with probability exactly 1, by an authorized subset, as mentioned earlier, the schemes given 

in [4],[5] and the scheme we propose in the next section claims this property with a probability merely 

close to 1 depending on the field size and some constants.  

Linear SSS's (LSSS) are widely studied under the notion of monotone span programs (MSP). Formally, a 

MSP is a 5-tuple M=(F,M,U, ,t), where F is a field, M is a matrix of dimensions dxe over F, 

U={u1,...,un} is a finite set,  : {1,...,d} → U is a surjective function assigning each row to a participant in 

U, and t  F
e
 is the so-called target vector. Participants are said to own or privately hold one or more 

certain row(s) of M. The MSP M is said to realize (compute) the monotone access structure   in case that 

t is spanned by the rows of the matrix MV  if and only if V    , where MV is the matrix whose rows are 

formed by participants of the set VU. The size of M is d, the number of rows of M. Indeed, the size of 

the MSP is the total number of shares that are distributed to all participants in U. 

Now giving share si to participant  (i), we can identify an LSSS with its underlying MSP. It is known, 

due to [6], that every monotone access structure admits a secret sharing scheme, but it is often the case that 

shares must be larger than the secret. 

If   is a monotone access structure realizing U, its dual  *
 = {V : V

c   } is also monotone and if M is 

an MSP that realizes  , then its dual M
*
 of the same size as M exits and realizes the dual access structure 

 *
. M

*
 can be efficiently constructed as described in [8]. An access structure is ideal if and only if its dual 

is. Given two monotone access structures  1 and  2 defined on sets of participants U1 and U2 
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respectively, one can define the product  1 x  2 as the monotone access structure defined on U1U2 

such that for any V   U1U2 it holds that V  1 x  2  (VU1   1 and  VU2  2) 

The following is a well-known realization of the product  1 x  2. 

Lemma 1. If MSPs M1 and M2  with matrices M1=(c1 M1') and M2=(c2 M2')  (where c1 and c2 are the first 

columns of the matrices) and target vectors 1=(1,0,...,0) realize the access structures  1 and  2  

respectively, then the matrix  

 

realizes  1 x  2 with target vector (1,1,0,...,0). 

The reason that the first columns of the matrices M1and M2 has been taken out is to simply be able to use 

the target vector (1,1,0,...,0). One can directly employ matrices M1and M2 without separating their first 

columns c1 and c2 as long as a target vector such as (1,0,...,0,1,0,...,0) is used. Note that the definition of 

product of two access structures,  1 x  2, and lemma 1 can naturally be extended to  1 x  2 x ... x  k 

in a straightforward manner. 

Lemma 2. Given MSPs M1 and M2  realizing access structures  1 and  2  defined on sets U1 and U2 

respectively, 

i)  if  M1 and M2  are ideal and U1 and U2 are disjoint sets, then  M1 x M2  is also ideal.  

ii) if  M1 and M2  are perfect, so is  M1 x M2. 

Proof. If M1 and M2 are ideal, participants from  1 and  2 own one and only one row apiece in the 

corresponding matrices M1 and M2, respectively. Let the reconstruction matrix of  1 x  2 be M1x2. Then 

participants of  1 x  2 will obviously own one row in M1x2 as well, since no participant who is both in 

U1 and U2 exists. Similarly if  M1 and M2 are perfect, determinants  |M1| and |M2| will be nonzero for every 

possible sets of authorized participants in  1 and  2 respectively, yielding to a nonzero determinant 

|M1x2|=|M1|.|M2|. 

3.0 THE MODIFIED SCHEME 

To extract the allowance of maximum number of participants from each compartment while recalling (1), 

define ti=ki-ki-1,1 i m  (assume k 0=0). Observe that 
1

m

i m

i

t k


 . Now the following describes a SSS to 

realize (1), namely hierarchical threshold access structures. 

 

In step 2, the purpose of multiplying the polynomials  with  in the bivariate polynomial Qi is 

simply to prevent the occurrence of identical columns in the reconstruction matrix so that the determinant 
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does not turn out to be zero (we will consider the importance of determinant in the proof of theorem 1). In 

the reconstruction phase, we let the rows of participants from higher compartments involve more variables 

by such a distribution of polynomials. In more detail, the row given to members of compartment C1 

involves a summation of all polynomials Pi(x), hence involving 
1

m

i

i

t


  variables. Similarly, the row given 

to members of compartment C2 involves 
2

m

i

i

t


 variables, whereas the polynomial corresponding to the 

lowest level compartment Cm involves only tm variables. This decreasing number of variables constitutes 

the main idea that produces a hierarchical effect. Obviously, the scheme is ideal as the shares of 

participants are taken from the domain of secrets F. Observe that the problem of recovering the secret in 

the above scheme is equivalent to solving the whole system, that is, there is no easy shortcut of obtaining 

only the polynomial coefficients ai1, i=1,...,m that sum up to the secret S. 

Theorem 1. An authorized set V may recover the secret S  with a probability bounded by 1-2kmdq
-1

 

where m is the number of compartments, km is the order of the reconstruction matrix, q is the size of the 

field and d is the degree of the variables in det(M). 

Proof.  We apply techniques in analogy with the ones used in the proofs of [5].  Notice that the 

reconstruction matrix M is km x km where km=t1+...+tm. Consider the equation M.A=Q where M is the 

reconstruction matrix formed by an authorized set of participants, A=(a11 ... a
11t  a21 ... a

22t . . .  am1 ... a
mmt )

t
  

is the vector of unknowns involving the secret and Q is the vector formed by private shares of participants. 

Employing basic linear algebra, we know that such an equation has a unique solution if and only if  

det(M)   0. That is, the probability that an authorized set can reconstruct the secret equals to the 

probability of det(M)   0 where M is their corresponding reconstruction matrix. Since the values xij and 

yij in the reconstruction matrix are random, the determinant is a random value over F. So the idea is that, 

the larger the underlying field F gets, the smaller the probability that the reconstruction matrix has 

determinant zero. And if the determinant is nonzero, then it is obvious that one can find its inverse and 

solve the unknown vector together with the secret embedded therein. Observe that there are two distinct 

variables in each of the km rows. So considering the expansion of M, we see that det(M) is a nonzero 

polynomial of 2km variables over the finite field F, where the highest degree of the variables in det(M) can 

be expressed as d = max(ti), 1  i  m. Now applying lemma 2.2 of [4], we see that the number of zeros of 

det(M) in F
2 mk

 is bounded by
2 1

2 mk

mk dq


. Indeed, these are all the choices that make det(M)=0 among all 

possible 
2 mk

q selections of the 2 mk  variables. So the probability that det(M)=0 is bounded by 

2 1
2 mk

mk dq
 2 mk

q


=
12 mk dq
. 

Observe that the distribution of entries of a reconstruction matrix M is similar to that of an upper 

triangular matrix. The reconstruction matrix employed in the proof of theorem 4 in [4] also has a 

triangular structure which seems to be rather in lower triangular-like form. Indeed this triangularity is the 

main specialty that gives a scheme characteristics of a hierarchical threshold secret sharing. For a random 

allocation of participant identities, with a high probability depending on the size of the field F, scheme 1 

perfectly realizes (1) as in the case of the corresponding scheme given in [4]. However, perfectness with 

probability 1 under a monotone allocation of participant identities provided in [4] is not satisfied in 

scheme 1. 

Example 1. Let m=3 be the number of compartments where, k1=2, k2=5, k3=8 yielding polynomials 

P1(x),P2(x),P3(x) of degrees respectively t1=2, t2=3, t3=3. Finally, let s1=2, s2=4,s3=2 be the number of 

participants from compartments C1, C2, C3 respectively. Then M is of the form; 
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We leave the fulfillment of polynomials and arbitrary parameters of the scheme to the reader. We provide 

an extensive table of probabilistic results regarding secret sharing scheme 1 with  assistance of a computer 

algebra system [11] where results in each of the entries are obtained by 10
5
 experiments with distinct 

random allocation of xij and yij values. 

Table 1: Success Rates of Reconstructibility of the Secret 

 
 

Observe that all the experimental results (impl.) in table 1 are greater than theretical bounds (theo.) 

obtained by the formula according to theorem 1. It can also be seen that, for artificially small values of q, 

the given bound is loose and sometimes it does not provide any information. Even in these cases, our 

modified scheme yields quite acceptable results for small m values. As q→∞, the aforementioned 

probabilities get closer to 1. Indeed, as ki values increase, higher q values will be needed to keep the 

probability of the success rate constant. The table, considering some extreme cases, also visualizes the fact 

that the distribution of si values 1  i  m affects the experimental probabilistic results. 

4.0 (C,M) HIERARCHICAL ACCESS STRUCTURES 

4.1      Motivation and The Scheme 

Let us first recall hierarchical threshold access structures introduced in [4]. Let U= 
1

m

ii
U


be the set of 

participants with m disjoint levels, i.e.,i Ui ∩ Uj =  , 1 i<jm and let ki 1

m

i be a sequence of integers 

with 0<k1<…<km. Then the corresponding hierarchical threshold access structure is 

 

Under the same assumptions of the above definition, the former hierarchical access structure that is 

studied by Simmons is as follows. 



On Hierarchical Threshold Access Structures 

RTO-MP-IST-091 17 - 7 

 

 

 

Observe that the only difference in (2) is the replacement of the universal quantifier with the existential 

quantifier . If we identify the requirement  as the threshold condition to be satisfied by 

levels Uj, j i yielding m conditions, then the distinction among (1) and (2) is that while Simmons' version 

exploits a disjunction of threshold conditions, Tassa's definition involves a conjunction of such conditions. 

Letting the c be the threshold number for conditions to be satisfied among m, the definitions above 

describe access structures that either demand the presence of exactly one of such conditions (c=1) or all of 

them simultaneously (c=m). That is, neither of the definitions above has flexibility to contain the 

intermediary access structures corresponding to values of 1<c<m . With this motivation, we consider the 

following generalization of the access structures (1) and (2). 

 

In Tassa's seminal work [4], the generalization (3) is indeed mentioned and a question asking whether it is 

an ideal access structure or not, is raised. To the best of our knowledge, no known SSS applies for the case 

of (c,m) hierarchical access structures for 1<c<m. Though we do not attempt to solve the open problem 

stated by Tassa, we give a non-ideal scheme realizing (3) and discuss the difficulty of establishing an ideal 

scheme for the realization of [4] in the section 4.2. It follows from the definition that a (c,m) hierarchical 

access structure is also a (c',m) hierarchical access structure for c'<c. Let us give a toy illustration of (3). 

Example 2. Consider a scenario where a secret is to be shared among participants from levels U1 , U2 and 

U3 which are formed by admirals, brigadiers and colonels respectively. Let us represent each participant of 

a certain level by the initial of the identifier of the level. That is, for instance, the phrase aab stands for a 

set formed by two admirals and one brigadier. Now m=3 and let k1=1, k2=2 and k3=3 for the sake of 

simplicity. The minimal authorized sets in the (c,m) hierarchical access structures, c={1,2,3}, according to 

definition 1 is as follows. 

 

Here, the term minimal authorized set, sometimes being called minterm, refers to a qualified set such that 

no participant within the set is redundant for the reconstruction of the secret. It is exemplified that all 

minimal subsets of (1) are of the same size while this is not true for (2) and (3). The ki values suggest that 

basically all the sets 1 admiral, 2 brigadiers and 3 colonels are of equal trust. Regarding involvement of 

each of the sets a, bb and ccc (while keeping in mind the fact that the lower level participants can always 

be replaced by upper level ones) as a condition to be imposed on an access structure, it is perfectly natural 

in real life to require any two of these conditions to be present as well as demanding either one of the 

conditions or all three of them simultaneously. 

One can mimic the realization of the (2,3) hierarchical access structure of example 2 with a naive 

employment of Shamir's weighted threshold secret sharing [1], by say assigning 3 shares to each admiral, 

2 shares to each brigadier and 1 share to each colonel and establishing a (5,n) SSS among the n 

participants via the well-known Lagrange interpolation. In this case, all the required the minimal 
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authorized sets {aa,ab,acc,bbb,bbc} are eligible to reconstruct the secret. However, the access structure of 

such a scheme would embody a set of participants such as ccccc which is not the case for (2,3) 

hierarchical access structure arousing from definition 1. Nevertheless, we can tailor a scheme for this 

particular case again via the well-known tools such as Lagrange interpolation and access structure product, 

but this time, with a different distribution of shares. The scheme can be described as follows. 

Scheme 2. To realize (3), assign one secret for each level and apply a scheme of Shamir's in a setting that 

each participant belonging to that level and the participants in the upper levels are given shares. That is, 

the dealer first applies a (c,m) Shamir's scheme on the secret to obtain m private partial shares, say s1, 

…,sm, so that any c of these values are sufficient to find the secret. Then he applies a separate Shamir's 

scheme on each si, 1 im, so that in each instance of such schemes, the shares are this time distributed 

to not only the members of the compartment Ui but also to the members of all compartments Ui ,…, Ui-1  

accomplishing the desired property that members of the upper level compartments can always replace 

participants of the lower ones. Here, each Shamir's scheme on the partial secret si will be arranged in a 

setting that si can be reconstructed only with the presence of any ki-ki-1 shares (assuming k0=0 for s1). This 

allows that the partial share si can be computed if and only if ki members from 
1

i

j

j

U


are present. Hence 

for a set of participants, reconstruction of each si ensures one threshold condition in  of definition 1. 

Since we require any c of such threshold conditions among m, the purpose of applying first a (c,m) 

scheme on the secret follows. 

4.2      Efficiency Issues, Perfectness and Discussions 

In scheme 1, each participant from U1 is given m shares; each participant from U2 is given m-1 shares and 

so on. Eventually, a participant from the lowest level Um is given only 1 share. In the order of operations 

performed for the reconstruction of the secret, there are m Lagrange interpolations each of which is to 

recover one of the partial secrets s1,...,sm, and there is one final occurrence of a (c,m) Shamir's scheme 

summing up to m+1 instances of Lagrange interpolations. Again, all these schemes can be combined by 

lemma 1. Since Lagrange interpolations are used as basic building blocks, the above scheme is perfect by 

lemma 2 and hence enjoys the property of reconstructability of the secret by an authorized set with 

probability 1. 

An observation on the difficulty of establishing an ideal and efficient LSSS for the realization of [4] is as 

follows. In [9], it is proven that a multipartite access structure involving a hierarchy among participants is 

ideal if and only if the access structure admits a vector space secret sharing scheme. So if there exists an 

ideal and efficient scheme realizing (3), it must be in the form of a vector space scheme, that is an ideal 

linear scheme constructed according to the method proposed by Brickell. In such a scheme, we are 

allowed to assign one and only one public vector to each participant including the target vector of the 

dealer, so that the shares are computed by dot products of these vectors with a random (secret) vector. 

Within such a setting, the purpose is to design a scheme which both allows higher-leveled participants to 

replace their inferiors and assures the satisfaction of any c of the m conditions defined on levels. Such a 

design may not be easy especially when one considers the varying size of minimal authorized subsets, 

which makes things a little more complicated. We would like to remind the reader that finding an efficient, 

ideal and linear solution for the disjunctive case of Simmons has remained a long standing open problem 

and its realization became possible in [4], only when some duality techniques were employed to the 

efficient and perfect vector space construction of its conjunctive counterpart, which has fixed length 

minimal authorized subsets. However, this approach does not seem to apply to (3), as the dual of a (c,m) 

hierarchical access structure of the form (3) is a (m+1-c,m) hierarchical access structure, again having 

variable-length minimal authorized subsets for 1<c<m. Indeed, regarding compartmented and hierarchical 

(c,m) access structures, our intuition is that the schemes that we realize herein have already attained best 

possible information rates. However, this statement is no further realistic than a conjecture without a 
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proof. In [8], it is also shown that a hierarchical access structure admitting a scheme in which the length of 

every share is less than 3/2 times the length of the secret, is ideal, that is, it admits an ideal scheme as well. 

However, this condition is not satisfied by the scheme we provide. So we are unable to apply the 

mentioned result of [8] for the (c,m) hierarchical case.  

A final remark on efficiency is that, in scheme 1, the number shares of a user is at most m, yielding to an 

information rate such as 1/m. However, we would like to note that, information rate is not he only notion 

of efficiency. Indeed, another similar complexity measure of secret sharing schemes is their share size, 

that is, the total length of all shares distributed by the dealer. Scheme 1 performs slightly better in the latter 

case than it does in the case of information rate. The reason is that, as there are typically more participants 

in the lower levels compared to that of higher ones, the average number of shares per user is usually lower 

than a worst case of (m+1)/2. The scheme we provide is obviously not be the best choice for the cases c=1 

or c=m. However, to the best of our knowledge, it is the only scheme that realizes the intermediary access 

structures in between two former definitions involving a hierarchy, it is perfect and is efficient enough for 

scenarios with small parameters. 

4.3      Fixing First k Levels 

Observe that for the case c=2 of example 2, it is possible for a group of brigadiers and colonels to 

reconstruct the secret without the presence of any admiral. However, the dealer may desire the existence 

of at least one admiral in an authorized set, that is, while the members of the set {aa,ab,acc} remains 

authorized, bbb and bbc will be identified as non-authorized. To restate this in a more general sense, the 

top k compartments may be distinguished by the necessity of satisfaction of all the conditions defined 

upon them, whereas this is not the case for the remaining lower compartments. That is, one may fix the 

first k compartments and obtain the following generalization under the same setting of definition 1. 

  
 

Here, k is the threshold value assuring that the conjunction of k conditions on the first k levels hold in an 

authorized set. Among the remaining m-k conditions left out, any c of them are considered to be enough. 

'  trivially becomes equivalent to  of definition 1 when k=0. A realization of '  is as follows. 

Scheme 3. We combine Tassa's conjunctive scheme involving Birkhoff interpolation and scheme 2 in a 

way handling ' .The dealer first applies Tassa's conjunctive scheme to participants of first k levels Ui, 

1 i k. So far, members of levels U1,…,Uk are given one share apiece. On the other hand, the dealer 

applies scheme 2 to members of the remaining levels Uk+1,…,Um, so that a participant from level Uk+1 is 

given m-k shares, a participant from level Uk+2 is given m-k-1 shares and finally, each participant from 

level Um is given only 1 share. For now, we have only partitioned the levels to two sets with indexes 

1,…,k and k+1,…,m applying Tassa’s conjunctive scheme and scheme 2 to each set respectively. The only 

missing part for the realization of '  is the allowance of members of U1,…,Uk to substitute lover-leveled 

participants belonging to Uk+1,…,Um. To allow this, we give a set of m-k additional shares to each member 

of levels U1,…,Uk. Such m-k shares are identical to the set of shares given to members of Uk+1, so that 

members of U1,…,Uk can always replace members of Uk+1,…,Um, which completes the scheme. The 

highest number of shares distributed belongs to members of levels U1,…,Uk, where each participant is 

given m-k+1 shares. 

Tassa's conjunctive scheme [4] is proven to be perfect for a sufficiently large field via a monotone 

allocation of participant identities. So, with a perfect employment of Tassa's scheme and a series Shamir's 

schemes in the basis of scheme 2, perfectness follows from lemma 2. As an underlying scheme for first k 

levels, one can of course choose any other scheme realizing (1), say the one given in [5], instead of the one 

employing Birkhoff interpolation [4]. But if the chosen scheme is not perfect with certainity, scheme 2 

will not reach perfectness with certainity either. Except that, the selection will not affect scheme 2. 
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It is described in [4] that the realization of the disjunctive access structure (2) can be achieved with the 

help of the conjunctive scheme realizing (1), and some duality techniques. On the other hand, scheme 2 is 

designed for the cases 1<c<m as it combines Tassa's conjunctive scheme for (1) and scheme 1. A 

particular case is as follows. When c=1 in ' , one may alternatively combine both Tassa's conjunctive 

and disjunctive schemes and apply to compartments U1,…,Uk and Uk+1,…,Um respectively to obtain a 

better information rate such as 1/2. 

5.0 CONCLUSION 

Our contribution. In the first part of this study, we consider an ideal and linear secret sharing scheme for 

the understanding of hierarchical threshold access structures and give some experimental analysis on the 

reconstructibility of the secret. In the second part of this work, we consider a generalization of the 

hierarchical access structure of Simmons' and the hierarchical threshold access structure of Tassa's. For 

this case, the linear scheme that we consider is not ideal but has a high information rate so that number of 

shares of a user is at most m and m/2 on average. 

Future work. One may attempt to prove or hopefully disprove the conjecture that we discussed in section 

4.2, regarding the nonexistence of an ideal, linear and efficient scheme for (3), perhaps with the 

involvement of the techniques similar to the ones in [9], which is out of the scope of this work. A 

constructive attempt for (3) might be designing a scheme with a better information rate, if there is any. 

Acknowledgments. The authors would like to thank Ali Aydın Selçuk for useful discussions. 

 

The authors were partially supported by TÜBİTAK under Grant No. TBAG-107T826. 

REFERENCES 

[1] A. Shamir, How to Share a Secret, Comm. ACM, vol. 22, no. 11, 1979, pp. 612-613. 

[2] G. R. Blakley, Safeguarding cryptographic keys, Proceedings of the National Computer Conference, 

1979, American Federation of Information Processing Societies Proceedings 48. 1979, pp. 313-317. 

[3] G.J. Simmons, How to (really) share a secret,  Advances in Cryptology - CRYPTO 88, LNCS 403, 

1990, pp. 390-448. 

[4] T.Tassa, Hierarchical Threshold Secret Sharing, Cryptology. 20, 237-264, 2007. An earlier version 

appeared in the proceedings of the First Theory of Cryptography Conference 2004, February, (MIT-

Cambridge), 2004, pp.  473-490. 

[5] T.Tassa, Multipartite Secret Sharing by Bivariate Interpolation,  J, Cryptology. 22, 2009, 227-258. 

[6] M. Ito, A. Saito, and T. Nishizeki. Secret sharing schemes realizing general access structure. In Proc. 

of the IEEE Global Telecom. Conf., Globecom 87, pages 99–102, 1987. Journal version: Multiple 

Assignment Scheme for Sharing Secret. J. of Cryptology, 6(1):15-20, 1993. 

[7] E.F. Brickell, Some ideal secret sharing schemes, Journal of Combinatorial Mathematics and 

Combinatorial Computing, 9, 1989, pp. 105-113. 

[8] S.Fehr, Efficient construction of the dual span program. Manuscript, May 1999. 

[9] Oriol Farras and Carles Padro, Ideal Hierarchical Secret Sharing Schemes,  Cryptology ePrint 

Archive: Report 2009, 141. 



On Hierarchical Threshold Access Structures 

RTO-MP-IST-091 17 - 11 

 

 

[10] E. Ballico, G. Boato, C. Fontanari, and F. Granelli, Hierarchical Secret Sharing in Ad Hoc Networks 

through Birkhoff Interpolation, K. Elleithy et al. (eds.), Advances in Computer, Information, and 

Systems Sciences, and Engineering, 2006, pp. 157-164. 

[11] Bosma W., Cannon J.: The MAGMA Computational Algebra System for Algebra, Number Theory 

and Geometry (version 2.11-14). University of Sydney, School of Mathematics and Statistics, 

Computational Algebra Group. 



On Hierarchical Threshold Access Structures      

17 - 12 RTO-MP-IST-091 

 

 

 
 


